Supplemental Methods: Prokka Annotations
1 Custom Prokka Annotations
We used Prokka v1.14.6 (Seemann, 2014) to annotate the 107 Corynebacterium strain genomes described in Table S1-A and the 28 Dolosigranulum pigrum genomes from our previous manuscript (Flores Ramos et al., 2021). The total 135 genomes are listed in CorPGA_AnnotationProkka_GenomeList_v01a.csv
and included in data/genomes
as .fasta
files.
We annotated the genomes in two different ways for proper compatibility and strain labeling with both GET_HOMOLOGUES and anvi’o.
1.1 Prokka annotations for GET_HOMOLOGUES
This step annotates all the .fasta
files in the selected input folder (path_i
) and places all the output annotated files in the output folder (path_o
). Output files headers get updated with –genus ‘Corynebacterium’ –species ‘sp’ and –strain based on the file name. We used default parameters, including gene recognition and translation initiation site identification with Prodigal (Hyatt et al., 2010).
#conda activate Prokka
path_i="data/genomes"
path_o="data/GET_HOMOLOGUES/Prokka_out"
mkdir -p "$path_o"
for file in $path_i/*.f*; do
FILENAME=`basename ${file%.*}`
prokka --prefix $FILENAME --outdir $path_o --genus 'Corynebacterium' --species 'sp' --strain $FILENAME --centre X --compliant --cpus 0 --force $file;
done
1.2 Prokka annotation for anvi’o
More information about importing Prokka annotations into anvi’o can be found here: https://merenlab.org/2017/05/18/working-with-prokka/#note-for-the-pangenomics-workflow
1.2.1 Fasta reformatting
Before the annotation step with Prokka we need to reformat the .fasta
files using anvi-script-reformat-fasta
. This script creates .fasta
files with simplified deflines and also by using --seq-type NT
prevents downstream errors with “characters that are not any of A, C, T, G, N, a, c, t, g, n.”
1.2.2 Prokka annotation
This step repeats the Prokka annotation using the anvi’o reformatted .fasta
files.
Output files headers get updated with –genus –species and –strain based on the info in the genomes list .csv
file.
#conda activate Prokka
csv_file="data/genome_lists/CorPGA_AnnotationProkka_GenomeList_v01a.csv"
path_i="data/Anvio8/Reformatted"
path_o="data/Anvio8/Prokka_out"
mkdir -p "$path_o"
while IFS=',' read -r name genus species; do
if [[ "$name" != "name" ]]; then # Skip the header
prokka --prefix "$name" --outdir "$path_o" --genus "$genus" --species "$species" --strain "$name" --cpus 0 --force "$path_i/$name.fa"
fi
done < "$csv_file"
1.2.3 Parsing .gff files
This step is to parse Prokka annotated genomes to import both the external Prodigal gene calls and functions independently into anvi’o. The input (path_i
) is the annotation in GFF3 format and outputs (path_o
) are two tab-delimited text files, one for gene calls (calls_*.txt
) and one for annotations (annot_*.txt
).
This is done with the script gff_parser.py
described in this tutorial.
1.2.4 Generating contigs databases
In this step the reformatted .fa
files (path_i
) and the external gene calls (calls_*.txt
) from Prokka (path_e
) get imported to generate anvi’o contig databases (path_o
). Initially we got a lot of early stop codon errors. Therefore, we add the –ignore-internal-stop-codons
flag.
#conda activate anvio-dev
path_i="data/Anvio8/Reformatted"
path_e="data/Anvio8/Parsed_prokka"
path_o="data/Anvio8/Contigs_db"
mkdir -p "$path_o"
for file in $path_i/*.fa; do
FILENAME=`basename ${file%.*}`
anvi-gen-contigs-database -f $file \
-o $path_o/$FILENAME.db \
--external-gene-calls $path_e/calls_$FILENAME.txt \
--ignore-internal-stop-codons \
-n $FILENAME;
done
1.2.5 Importing Prokka functional annotation
Finally, the external functional annotations (annot_*.txt
) from Prokka (path_e
) get imported into the Anvi’o contigs databases (path_i
).
2 NCBI annotations
The 9 genome assemblies listed in Table S3D CorPGA_AnnotationNCBI_GenomeList_v01a.csv
and included in data/genomes_NCBIAnnotation
where used as references for comparisons on the KEGG metabolic analysis only. These genomes were not part of the phylogenetic/pangenomic analysis, and we were interested in keeping the original NCBI annotations in the anvi’o contig databases.
They were downloaded from NCBI in .gbff
format and processed as follows:
2.1 Parsing .gbff files downloaded from NCBI
First we used anvi-script-process-genbank
to parse the .gbff
files (path_i
) in order to output (path_o
) the corresponding properly formatted .fa
files, plus two tab-delimited text files, one for gene calls (calls_*.txt
) and one for annotations (annot_*.txt
).
#conda activate anvio-dev
path_i="data/genomes_NCBIAnnotation"
path_o="data/Anvio8/Parsed_NCBI"
mkdir -p "$path_o"
for file in $path_i/*.gbff; do
FILENAME=`basename ${file%.*}`
anvi-script-process-genbank -i $file \
--output-gene-calls $path_o/calls_$FILENAME.txt \
--output-functions $path_o/annot_$FILENAME.txt \
--output-fasta $path_o/$FILENAME.fa \
--annotation-source prodigal
done
2.2 Fixing annotation files
The parsed annotation files from the original NCBI annotations describe the annotation source as “prodigal”, but in the rest of the files that we have manually annotated describe the source as “Prodigal”. Later anvi’o will not be able to cluster together genomes with different annotation sources, so we need a consistent name. Here we iterate through all *.txt
files in the folder and perform text replacement from “prodigal” to “Prodigal”.
path_i="data/Anvio8/Parsed_NCBI"
for file in "$path_i"/*.txt; do
if [ -f "$file" ]; then
# Create a temporary file for the updated content
tmp_file=$(mktemp)
# Perform the text replacement and save it to the temporary file
sed 's/prodigal/Prodigal/g' "$file" > "$tmp_file"
# Replace the original file with the temporary file
mv "$tmp_file" "$file"
echo "Text replacement completed for $file"
fi
done
2.3 Generating contigs databases
In this step the .fa
files and the gene calls from NCBI (path_i
) get imported to generate anvi’o contigs databases (path_o
).
#conda activate anvio-dev
path_i="data/Anvio8/Parsed_NCBI"
path_o="data/Anvio8/Contigs_db"
mkdir -p "$path_o"
for file in $path_i/*.fa; do
FILENAME=`basename ${file%.*}`
anvi-gen-contigs-database -f $file \
-o $path_o/$FILENAME.db \
--external-gene-calls $path_i/calls_$FILENAME.txt \
-n $FILENAME;
done
2.4 Importing Prokka functional annotation
Then the NCBI external annotations (path_e
) get imported into the Anvi’o contigs databases (path_i
).